

Artificial Intelligence & Data Science (Academic Year :2023-2024)

Course	Code: CSC503			
Course Name: Artificial Intelligence				
Course Teacher: Prof. Saurabh Kulkarni				
Course Outcomes (CO): At the End of the course students will be able to				
CO.1	Identify the characteristics of the environment and differentiate between various agent			
	architectures			
CO.2	Apply a suitable search strategy to design problem solving agents			
CO.3	Design knowledge-based agents using knowledge representation and inference rules.			
CO.4	Apply a probabilistic model for reasoning under uncertainty			
CO.5	Describe various learning techniques			

Course Lesson Plan

Sr.	Proposed	Topics	Delivery Mode	CO	Assessment	Ref.	Actual	Remark
No.	Date				Tool	book	Date	
1	11/7	Information about syllabus, assessment and course outcomes,	Lecture			1		
		Introduction to AI						
2	12/7	AI Perspectives, Acting and thinking humanly, Acting	Lecture	CO1	UT1, Q1	1		
		and thinking rationally						
3	14/7	History of AI, Applications of AI, The present state of	Lecture	CO1	UT1, Q1	1		
		AI, Ethics in AI,						
		Quiz 1: MCQ based quiz as a part of the flipped classroom						
4	18/7	Introduction to agents, Structure of intelligent	Lecture	CO1	UT1	1		
		agent						
5	19/7	characteristics of intelligent agents, types of agents: Simple reflex	Lecture	CO1	UT1	1		
6	21/7	Model-based agents	Lecture	CO1	UT1	1		
7	24/7	Types of agents: Goal-based, utility-based	Lecture	CO1	UT1	1		
8	27/7	Definition of search and state space representation	Lecture	CO2	UT1, A1	1		
9	28/7	Problem as state space search, problem formulation	Lecture	CO2	UT1, A1	1,2		Cancelled
								due to Rain
10	31/7	Well-defined problems	Lecture	CO2	UT1, A1	1,2		
11	03/8	Solving problems by searching	Lecture	CO2	UT1, A1	1,2		
			-					
12	04/8	Performance evaluation of search strategies, time complexity, space	Lecture	CO2	UT1, A1	1		
		complexity, completeness, optimality						

SOCIETY OF ST. FRANCIS XAVIER, PILAR'S

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

(Approved by AICTE & Affiliated to University of Mumbai)

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050.

Phone : (022) 6711 4000, 6711 4101, 6711 4104

Website : www.frcrce.ac.in • Email : crce@fragnel.edu.in

13	07/8	Uninformed search: DFS	Lecture	CO2	UT1, A1	1	
14	10/8	Iterative deepening and bi-directional search	Lecture	CO2	UT1, A1	1	
15	11/8	BFS, uniform cost search, comparison of all the uninformed search techniques	Lecture	CO2	UT1, A1	1	
16	14/8	Informed search: Heuristic function, Admissible heuristic	Lecture	CO2	UT1, A1	1	
	15/8	Independence Day					
	16/8	Parsi New Year					
17	17/8	Greedy best first search	Lecture	CO2	UT1, A1	1	
18	18/8	A* search	Lecture	CO2	UT1, A1	1	
19	21/8	Informed search with example	Lecture	CO2	UT1, A1	1	
20	24/8	Local search: Hill climbing	Lecture	CO2	UT1, A1	1	
21	25/8	Simulated annealing, genetic algorithm	Lecture	CO2	UT1, A1	1	
	28/8	Unit Test-1		CO1,2			
	29/8	Unit Test-1, Mid-Term Feedback		CO1,2			
22	31/8	Adversarial search: Mini Max Technique	Lecture	CO2	A1	1	
23	01/9	Adversarial search: Mini Max with alpha beta pruning	Lecture	CO2	A1	1	
	02/9	Assignment 1: Coding assignment					
24	04/9	Definition and importance of knowledge, issues in knowledge representation, knowledge representation systems, properties of knowledge representation systems	Lecture	CO3	UT2, Q2	1	
25	07/9	Propositional logic- syntax, semantics, formal connectives, truth tables	Lecture	CO3	UT2, Q2	1	
26	08/9	Tautology, validity, well-formed formula, Prolog introduction	Lecture	CO3	UT2, Q2	1, R1	
27	11/9	Predicate logic- FOPL, syntax, semantics, quantification	Lecture	CO3	UT2, Q2	1	
28	14/9	Inference rules in FOPL	Lecture	CO3	UT2, Q2	1	
29	15/9	Forward chaining, backward chaining	Lecture	CO3	UT2, Q2	1	
	16/9	Remedial session		C01,C			

SOCIETY OF ST. FRANCIS XAVIER, PILAR'S

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

(Approved by AICTE & Affiliated to University of Mumbai)

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050.

Phone : (022) 6711 4000, 6711 4101, 6711 4104

Website : www.frcrce.ac.in • Email : crce@fragnel.edu.in

				O2			
30	18/9	CNF (Pre-requisite to understand Resolution)	Lecture	CO3	UT2, Q2	1,2	
	19/9	Shri Ganesh Chaturthi					
31	21/9	Resolution in FOPL	Lecture	CO3	UT2, Q2	1	
		Quiz 2: Online Quiz					
32	22/9	Handling uncertain knowledge, random variables	Lecture	CO4	UT2, Q3	1	
33	25/9	Prior and posterior probability	Lecture	CO4	UT2, Q3	1	
	28/9	Anant Chaturdashi					
34	29/9	Full joint distribution	Lecture	CO4	UT2, Q3	1	
	02/10	Gandhi Jayanti					
35	05/10	Bayes rule and its use	Lecture	CO4	UT2, Q3	1	
36	06/10	Bayesian belief network and inference	Lecture	CO4	UT2, Q3	1,3	
		Quiz 3: Online quiz					
	09/10	Unit Test-2		CO3,4			
	10/10	Unit Test-2		CO3,4			
37	12/10	The planning problem, partial order planning, total	Lecture	CO5	A2	1,3	
		order planning					
38	13/10	Assignment 2: pre-requisite (concept of supervised, unsupervised,	Lecture	CO5	A2	1,3	
		semi supervised, reinforcement learning, ensemble learning)					
39	16/10	Expert system- concepts and components	Lecture	CO5	A2	1,3	
40	19/10	Assignment 2- Coding assignment on machine learning		CO5	A2	1	
41	23/10	Course end and remedial session	Lecture	CO3,4,5	5	1	Synergy
	30/10	Dashahera					
		University ESE Examination					

Text Books:

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", Pearson Education, 2nd edition.
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill Education Pvt. Ltd., 3rd edition.
- 3. George F Luger, "Artificial Intelligence", Pearson Education., 4th edition.

Reference Books:

1. Ivan Bratko,"PROLOG Programming for Artificial Intelligence", O'Reilley publication, Pearson Education, 3rd edition

2. D. W. Patterson, "Artificial Intelligence and Expert Systems", Prentice Hall.

3. Saroj kaushik, "Artificial Intelligence", Cengage Learning.

4. Davis E. Goldberg, "Genetic algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

5. Patrick Henry Winston, "Artificial Intelligence", Addison-Wesley, Third Edition

6. N. P. Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press

Course Instructor: Prof. Saurabh Kulkarni